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Abstract—The early diagnosis of Non-Alcoholic Fatty Liver 

Disease (NAFLD) is crucial to prevent fibrosis progression or 

onset of advanced chronic liver disease. Among the non-invasive 

methods, ultrasound (US) B-mode imaging is recommended for 

population screening and follow-up. Hamaguchi’s score was 

proposed to improve the objectivity in the evaluation of the fatty 

liver US imaging evaluation. In this study, we aimed to 

preliminary assess the possibility to estimate Hamaguchi’s score 

by means of an advanced ultrasound image semi-automatic 

analysis. 

The study encompassed a dataset of 220 bariatric patients with 

NAFLD diagnosed by liver biopsy who underwent ultrasound 

assessment at the Liver Clinic at Trieste University Hospital. The 

classification models for the estimation of the three Hamaguchi’s 

sub-scores were produced by semiautomatic US image analysis 

based on clustering and CNN with transfer learning techniques. 

The results showed that the produced models were able to 

estimate the three sub-scores with high classification accuracy. 

The predictive models produced for the estimation of liver 

brightness hepatorenal echo contrast, the diaphragm deep 

attenuation, and the vessel blurring sub-scores presented a 

classification accuracy on the validation set of 90.5%, 83.3%, and 

84.0%, respectively.  

In conclusion, in this preliminary study, the results assessed 

the possibility to produce the NAFLD computer-aided diagnostic 

models based on analysis of US images.  

Keywords—NAFLD, Hamaguchi’s score, ultrasound images, 

Artificial Intelligence. 

I. INTRODUCTION 

AFLD represents a spectrum of diseases related to 

excessive fat deposition in the liver, ranging from simple 

steatosis (i.e., non-alcoholic fatty liver, NAFL) to non-

alcoholic steatohepatitis (NASH), characterized by lobular 

inflammation and hepatocyte ballooning, which over time can 

increase liver fibrosis, thus promoting liver cirrhosis or 

hepatocellular carcinoma [1]. NAFLD is the most common 

chronic liver disease in the world (approximately 25% of the 

global population has been affected by NAFLD [2] and is 

projected to be 33.5 % by 2030 [3]). Current clinical guidelines 

recommend dietary treatment as the most efficient preventive 

intervention in addition to early evaluation and monitoring of 

liver functions to prevent advanced fibrosis or hepatocellular 

carcinoma [4], [5]. The gold standard for staging is liver 

biopsy, which is expensive and invasive, making it unsuitable 

for broad screening at the population level [6].  

Among the noninvasive methods, ultrasound B-mode 

imaging has been recommended as the preferred first-line 

diagnostic procedure for imaging of NAFLD in adults by the 

clinical practice guidelines of the European Association for the 

Study of the Liver released together with the European 

Association for the Study of Diabetes and the European 

Association for the Study of Obesity [7]. 

But this method has the limitation that the evaluation of a 

US image is operator dependent: several studies conducted 

have reported significant intra- and inter-observer variability 

in the assessment of ultrasonographic findings of hepatic 

steatosis [8]-[10]. In particular, an agreement between pairs of 

experienced observers of only 47-59% on the first reading and 

59-64% on the second reading was reported [9]. 

In daily practice, physicians evaluate hepatic steatosis on the 

US image by analyzing some of its features: the echogenicity 

of the liver parenchyma compared with the echogenicity of the 

kidney, the visibility of intrahepatic vessels and the diaphragm 

blurring [11]. These features allow physicians to assess the 

presence of hepatic steatosis because an excess fat component 

in the liver would make it shine brighter to a greater extent 

than in the kidney (normally isoecogenic) and would attenuate 

the ultrasound probe's beam making visualization of 

intrahepatic vascular structures and the diaphragm poor. 

To improve objectivity, Hamaguchi et al. proposed a semi-

quantitative US-based scoring method [12]. In particular, the 

proposed scoring system is based on the comparison of liver 

and kidney echogenicity, assessment of liver brightness 

(scored liver brightness from 0 to 3), of deep attenuation of 

diaphragmatic contours by the liver (scored from 0 to 2), and 

of liver vessel blurring (scored from 0 to 1). The sum of the 

aforementioned sub-scores yields Hamaguchi’s score ranging 

from 0 (corresponding to a healthy liver) to 6 (corresponding 

to a fatty liver). Although Hamaguchi's score improved the 

standardization of the degree of hepatic lipid accumulation in 

the liver, it still suffers from the fact that the assessment is a 

subjective measure strongly influenced by the expertise of the 

physician evaluating the US image.  

Over the past decade methods based on Artificial 

Intelligence (AI) are used for identifying and predicting 

patterns or connections within large datasets in various fields 

of medicine, demonstrating utility in the diagnostic process. A 

recent meta-analysis on the AI-based methods for liver 

diagnosis reported high-accuracy results of the application of 

these methods on diagnostic imaging for the diagnosis and 

staging of NAFLD [13]. However, despite the numerous 
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applications of AI in the diagnostic field of NAFLD, methods 

based on AI have never been applied to the analysis for 

Hamaguchi’s score estimation. The aim of this study is to 

develop Machine Learning (ML) and Deep Learning (DL) 

algorithms for the advanced analysis of US images that can 

estimate the sub-scores of the various categories of 

Hamaguchi’s score and thus propose a new approach for 

automatic analysis of the same. 

II. MATERIALS AND METHODS 

A. Data acquisition and dataset definition 

The study includes 220 bariatric patients with NAFLD 

diagnosed by liver biopsy who underwent US assessment at 

the Liver Clinic at Trieste University Hospital. The clinical 

and radiological data of included patients were analyzed to 

create the study dataset. The inclusion criteria were liver 

biopsy-based NAFLD diagnosis, and US assessment 

characterized by the visibility of liver and renal parenchyma, 

visibility of intrahepatic vessels, and visibility of the 

diaphragm.  

To assign the sub-scores constituting the Hamaguchi score, 

three parameters must be evaluated on the US image, but not 

in all cases all three parameters are assessable on a single US 

scan as it depends on the bariatric patient's physical 

conformations: there are patients who have all three 

parameters of interest in one US image, patients who have liver 

and kidney in a single US image while diaphragm and 

intrahepatic vessels in another, as well as patients who have all 

three parameters in three different US images. So, with the 

support of physicians in the selection, three datasets were 

created: the Hepatorenal dataset, the Diaphragm dataset, and 

the Vessel dataset.  

All three datasets contain 220 US images (one for each 

patient). For each of the three datasets, the images were 

appropriately evaluated by four physicians who independently 

assigned the respective sub-scores constituting the Hamaguchi 

score, and where ratings were not equal, the scores were 

reviewed and decided by consensus. 

B. The proposed framework to evaluate automatically 

Hamaguchi’s score 

The proposed approach for automatic estimation of 

Hamaguchi’s score is based on separate estimation of sub-

scores by semiautomatic analysis of US images. Considering 

that the sub-score assessments are based on the identification 

of different features, three sub-score related algorithms were 

developed. For the evaluation of the liver brightness 

hepatorenal echo contrast score, a semi-automatic evaluation 

based on clustering was adopted, while for the evaluation of 

the diaphragm deep attenuation score and of the vessel blurring 

score a semi-automatic methodology based on the 

development of two CNNs with transfer learning techniques 

was implemented. 

Considering the variability of the US images and moderate 

sample size, to produce performant classification algorithms, 

additional pre-processing was performed by manually 

delineating the ROIs to define Diaphragm dataset and Vessel 

dataset. 

 

 
Fig. 1: The ROIs definition from raw US images for the Diaphragm and 

Vessel datasets. 

C. Estimate of liver brightness hepatorenal echo contrast 

score 

For the calculation of liver brightness hepatorenal echo 

contrast, two ROIs were manually identified by the medical 

team: one in the lighter region of the liver parenchyma, and the 

other in the darker area of the cortical area of the kidney. A 

script written in Python allows to select two ROIs (of size 5x5 

pixel to ensure that the cortical region of the kidney is selected 

without including its interface with the liver) and process them 

to extract the feature of interest. In this way, features related to 

the echogenicity of the liver were obtained for each US image 

sample. All previously saved features are later analyzed with 

K-means by setting the number of four classes (liver brightness 

hepatorenal echo contrast score could be 0, 1, 2, and 3). In this 

way, four classes were distinguished. 

Based on this clustering, a classification model was built to 

evaluate the feature extracted from an ultrasound image of the 

liver by assigning it a score ranging from 0 to 3. 

 

 
Fig. 2: The feature extraction for the liver brightness hepatorenal echo contrast 

sub-score. The two ROIs are manually selected by the physician from the raw 

image. One is in the lighter region of the liver parenchyma, and the other is in 

the darker region of the cortical zone of the kidney. When these two ROIs are 
selected, a feature is extracted by calculating the distance between the average 

intensity level of the area corresponding to the liver (liver) and the average 

intensity level of the area corresponding to the kidney (kidney). The difference 

is divided by the maximum intensity present in the US image. 

Diaphragm dataset

Vessel dataset
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D. Estimate of diaphragm deep attenuation score and liver 

vessel blurring score 

The diaphragm deep attenuation score is evaluated 

according to how well the diaphragm is visible: the greater the 

presence of fat in the liver, the greater the absorption of 

ultrasound signal and thus the lower the visibility of the 

diaphragm. Similarly for liver vessel blurring score. So, we 

chose to evaluate these scores using CNNs and transfer 

learning for each kind of score. 

Before implementing and training the CNNs, the image 

datasets of both the diaphragm's dataset and the vessel's dataset 

are divided into three sub-sets of images each: training set, 

validation set, and test set with a ratio of 75%, 15%, and 10% 

respectively. So, the sub-set consists of 165, 33, and 22 US 

images on the training set, validation set, and test set 

respectively. The test set is used only once the model has been 

fully trained. To give correct assessments, the test set must be 

well maintained and contain a variety of images covering the 

various classes of each sub-score.  

Although the transfer learning technique is used to produce 

CNNs with high classification accuracy, many images are still 

required in the training set, and the sample case histories need 

to be balanced. So, the training set has been also augmented 

and balanced via data augmentation and the techniques which 

consisted of 10° right/left rotation, random in/out zooming 

ranging from 0.8 to 1.2, and horizontal flip operations in a 

random manner. 

Ten CNNs were implemented with transfer learning 

techniques (TABLE I) to choose the most suitable and 

performing network for the diaphragm deep attenuation score 

and the vessel blurring score. The networks' development was 

implemented with Python scripts by importing the Tensorflow 

and Keras libraries. In particular, the pre-trained networks 

VGG-16 and VGG-19 from Keras are imported as the base 

model. 

 
TABLE I: ARCHITECTURES OF THE TEN IMPLEMENTED CNNs  

# 
Base 

model 

Additional convolutional 

block 
Classification block 

1 VGG-16 - 

Flatten layer 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

2 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (512 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

3 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (4096 nodes) 

Dense layer (512 nodes) 

Output layer 

4 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (4096 nodes) 

Dense layer (4096 nodes) 

Output layer 

5 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Dense layer (128 nodes) 

Output layer 

6 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

Conv2D layer (128 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (1024 nodes) 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

7 VGG-16 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

Conv2D layer (128 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (1024 nodes) 

Dense layer (512 nodes) 

Output layer 

8 VGG-19 - 

Flatten layer 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

9 VGG-19 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

10 VGG-19 

Conv2D layer (512 nodes) 

Conv2D layer (256 nodes) 

Conv2D layer (128 nodes) 

MaxPooling2D layer 

Flatten layer 

Dense layer (1024 nodes) 

Dense layer (512 nodes) 

Dense layer (256 nodes) 

Output layer 

    

In output to VGG-Nets, a convolutional layers’ block is 

added with trainable parameters to extrapolate additional 

features. After this block, there is a flatten layer that brings all 

the outputs of the previous layer onto a one-dimensional array 

to be given as input to the top layer. The top layer of the 

different implemented architectures shown in TABLE I 

change depending on the number of convolutional layers and 

the number of nodes per layer. All top layers share the fact that 

they have the same activation function (the Rectified Linear 

Unit - ReLU). Between the various dense layers of all models, 

there are dropout layers: these layers keep the overfitting of 

the model under control. 

The output layer of the models differs between the two 

scores: the diaphragm deep attenuation score could be 0, 1, or 

2, so should be able to predict three classes. Instead, the vessel 

blurring score should only involve two classes (0 or 1).  

For the diaphragm deep attenuation score, which is a multi-

class problem, then the network outputs an array containing 

the probability associated with each score value. The array 

index that will have obtained the highest probability will 

constitute the final output. The activation function is a softmax 

and the loss function is the categorical cross entropy. Instead 

the vessel blurring score is a binary problem and then the 

output layer has only one neuron. This neuron will report the 

value of the predicted parameter and the probability of the 

realized prediction. This is a binary classification problem, so 

the activation function is a sigmoid, and the loss function 

calculation is the binary cross entropy. The performances of 

models were evaluated by classification accuracy, loss, Area 

under the ROC curve (AUC), and precision. 

III. RESULTS 

The predictive model produced for the classification of liver 

brightness hepatorenal echo contrast score presented a 

classification accuracy of 90.5% considering the sub-scores 

labeled by physicians. In the misclassified cases the maximum 

error for this sub-score was one point. Regarding the model for 

estimation of the diaphragm deep attenuation and the vessel 
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blurring sub-scores, architecture #10 and architecture #2 

(TABLE I) showed the best classification performance on the 

validation dataset, respectively. The classification accuracy, 

loss, AUC, and precision obtained for these models are 

reported in TABLE II.  
 

TABLE II: THE PERFORMANCE PARAMETERS OF THE TWO 

SELECTED MODELS OF EACH SUBSCORES 

 Accuracy Loss AUC Precision 

Diaphragm deep 
attenuation 

83.25 % 0.48 0.93 83.0 % 

Vessel blurring 84.05 % 0.44 0.89 89.0 % 

     

The identified models were subsequently tested on the test 

dataset. The confusion matrixes for diaphragm deep 

attenuation and vessel blurring sub-score models are reported 

in TABLE III-A and III-B, respectively. The algorithm for the 

estimation of diaphragm deep attenuation showed an accuracy 

of 81.8%. The misclassified scores were under or over-

estimated by one point. Reading the vessel blurring sub-score 

model the identified model presented a classification accuracy 

of 86.4% on the test dataset. In both cases, the models 

maintained the performance obtained during the training and 

validation process. 
 

TABLE III: COMPARISON OF THE PREDICTED SUBSCORE AND 

THE SUBSCORE ASSIGNED BY THE PHYSICIANS ON THE TEST 

SET REPRESENTED BY A NORMALIZED CONFUSION MATRIX 

A) DIAPHRAGM DEEP ATTENUATION SUBSCORE 

True label 

Score 0 0.875 0.125 0 

Score 1 0.125 0.75 0.125 

Score 2 0 0.125 0.875 

  Score 0 Score 1 Score 2 

  Predicted label 

B) VESSEL BLURRING SUBSCORE 

True label 
Score 0 0.73 0.27 

Score 1 0 1.00 

  Score 0 Score 1 

  Predicted label 

IV. DISCUSSION  

The early diagnosis of NAFLD is important to prevent 

fibrosis progression, liver cirrhosis, or hepatocellular 

carcinoma [4], [5]. Among the noninvasive methods, US B-

mode imaging is recommended for population screening and 

follow-up [7]. But this method has the limitation that the 

evaluation of a US image is operator dependent [8]-[10]. 

Hamaguchi's score improved the standardization of the degree 

of hepatic lipid accumulation in the liver [12], but this score 

suffers from the fact that the assessment is a subjective 

measure strongly influenced by the expertise of the physician 

evaluating the US image. In this study, we aimed to 

preliminary assess the possibility to estimate Hamaguchi’s 

score by means of advanced image analysis. 

The results of this study showed that methods based on AI 

can estimate the three sub-scores which determine 

Hamaguchi’s score. Indeed, the produced models presented a 

high classification accuracy for all three sub-scores. The 

results obtained for all three sub-scores are clinically relevant 

and suggest that such decision support systems in the future 

may support the diagnosis of liver disease in a way that will 

reduce intra- and inter-operator assessment error. 

The study presents the following limits: the possible reliance 

on manual segmentations, the use of images acquired from 

only one type of US scanner, the moderate sample size, and 

the retrospective nature of the study. The latter limited the 

possibility to build a dataset with balanced case histories. 

These preliminary results should be confirmed and 

potentially improved on a larger sample size and more 

clinically balanced dataset. In addition, the presented approach 

could be additionally improved by developing an automatic 

tool for ROI selection. 

In conclusion, in this preliminary study, the results assessed 

the possibility to produce the NAFLD computer-aided 

diagnostic models based on analysis of US images.  
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